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The inequality
OSSN  SCUM, f=Fllis)

is proved, 1993 Academic Press, Inc.

In a recent paper, Berens, Schmid, and Xu [1] studied the rate of
convergence of the Bernstein-Durrmeyer operator (given below by (4)) in
terms of a measure of smoothness. They conjectured that

W3S 1/ n)y S Cmax (Mo f = f s, (1)

for 1 < p< o0 and proved that (1) is valid for p=2. Recall that w(f, 1),
(see [1, 4, Sect. 3; 6, Chap. 12, p. 202]) is given by

w(fi 1), =8Sup Sup (45, /i (2)

ce by O<h<t

where V¢ is the set of edges of S, ¢, (x)=/x,(1 — x|} (Ix|=2¢_, x;), and
(pm,‘,],‘,wg(x):./x,x},. While we cannot prove (1) for p#2, we present
here a short proof of

W3 S < CUML L= 1) (1y

which is somewhat stronger than (1) for p=2 as w}(/, 1) is monotone.
The equivalence between the apropriate K-functional and w3i(f, ), and
the use of standard procedures make it clear that it is sufficient to show

1P, ADYM, [lo<IPDIYM, fllo<nlIM, f— [l (3)
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where

0 d
=3 P,(D)= Z P Xl —Ixl) =

i<y i=1 i
0 ¢ 0 é
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Derriennic [5, p. 157] proved that II, =11, _ @V, where I1, is the set of
polynomials of total degree k and V, is the eigenspace of P(D) with the
eigenvalue —k(k + d). Derriennic [5, p. 157] also showed that

I . (n+d)!n!
M"f_kgoin_kvk(f), /-n_k—(n+k+d)! (n—k)!,

(4)
where v, (f) is the orthogonal projection of f on V,. (Obviously, V, is an
eigenspace of M, with eigenvalue 4, ,.)

Now, after setting the notations, we are ready to prove (3).

The operator P, (D) is self adjoint and P, (D): 11, —11,. As
(P DYyv,uy=<Cv, P, (Dyu>=0 for veV, and uell, |, we have
P, ,(D)V,—V,. Hence, one can show V, = U, @ --- P U, , where U, , is
the eigenspace of P, (D) in V, with eigenvalue —/(/+1). This follows
as P, (D)v=Jv for some polynomial v yields 2= —I/(/+1), [ being the
leading power of x; in the expansion of v and the expansion is in x,, ..., X,
when dealing with P, (D) and in x, for r # j and (1 —|x]) in place of x, for
P, (D), i# j. We may now remark that U,,, constructed for the pair i, J,
is an eigenspace of M,, P(D), and P, (D) and hence, on U,,, these
operators commute. As the direct sum of U, 0<k<m, 0!k, is 1T,
and since polynomials are dense in W/(S) = {f:(8/6¢)' fe L,(S)}, we have

M,P, (D)f=P (D)M,f and P, (D)P(D)f=P(D)P,,(D)f (5)

in W2(S) and W;(S), respectively. (See [2, Lemma 2.5] for a similar argu-
ment.) Setting u,,, and v,, as the orthogonal projections of f on U,,, and
V.., respectively, we may use the Parseval equality to write

1P, (DYM, fli= Z Z (AU + 1)) Nyl 3

m=01=0

S i i (in,mm{m+d))2 “ul.mng

m=01=0

=||P(D) M, f3. (6)
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Using (1 —4,,,,)n= 4, ,,m(m+ d) which can be proved by induction on m,
we have

IPDYM,fl3= 3, (Zpmm(m+d)) |v,l3

m=0

< ((l —Zn,m)n)z ”vm”§=n2 ||Mnf‘f”§ (7)

0

R

The details of the induction proof are omitted. In [3]
(PDYM, fl,<CniM,.f—fl, l<p<oa,

which is weaker than (7) for p=2, is proved.
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