Note

A Note on Bernstein-Durrmeyer Operators in $L_{2}(S)$

W. Chen and Z. Ditzian
Department of Mathematics, University of Alberta, 632 Central Academic Building, Edmonton, Alherta T6G 2G1, Canada

Communicated by Paul Nevai
Received April 8, 1991; accepted in revised form November 1, 1991

The inequality

$$
\sigma_{S}^{2}(f, 1 / \sqrt{n})_{t_{2: t}, 5} \leqslant C\left\|M_{n} f-f\right\|_{t_{21} S}
$$

is proved. in 1993 Academic Press, Inc.

In a recent paper, Berens, Schmid, and Xu [1] studied the rate of convergence of the Bernstein-Durrmeyer operator (given below by (4)) in terms of a measure of smoothness. They conjectured that

$$
\begin{equation*}
\omega_{S}^{2}(f, 1 / \sqrt{n})_{p} \leqslant C \max _{k \geqslant n}\left\|M_{k} f-f\right\|_{L_{p}(S)}, \tag{1}
\end{equation*}
$$

for $1<p<\infty$ and proved that (1) is valid for $p=2$. Recall that $\omega_{s}^{\prime}(f, t)_{p}$ (see [1, 4, Sect. 3; 6, Chap. 12, p. 202]) is given by

$$
\begin{equation*}
\omega_{S}^{r}(f, t)_{p}=\operatorname{Sup}_{e \in V_{S}} \operatorname{Sup}_{0<h \leqslant t}\left\|A_{h \varphi_{i} e}^{r} f\right\|_{L_{p}(S)}, \tag{2}
\end{equation*}
$$

where V_{S} is the set of edges of $S, \varphi_{e_{i}}(x)=\sqrt{x_{i}(1-|x|)}\left(|x|=\sum_{i=1}^{d} x_{i}\right)$, and $\varphi_{\left(e_{i}-e_{)}\right) / \sqrt{2}}(x)=\sqrt{x_{i} x_{j}}$. While we cannot prove (1) for $p \neq 2$, we present here a short proof of

$$
\begin{equation*}
\omega_{S}^{2}(f, 1 / \sqrt{n})_{2} \leqslant C\left\|M_{n} f-f\right\|_{L_{2}(S)} \tag{1}
\end{equation*}
$$

which is somewhat stronger than (1) for $p=2$ as $\omega_{s}^{2}(f, t)$ is monotone.
The equivalence between the apropriate K-functional and $\omega_{S}^{2}(f, t)_{2}$ and the use of standard procedures make it clear that it is sufficient to show

$$
\begin{equation*}
\left\|P_{i, j}(D) M_{n} f\right\|_{2} \leqslant\left\|P(D) M_{n} f\right\|_{2} \leqslant n\left\|M_{n} f-f\right\|_{2} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
P(D) \equiv & \sum_{i \leqslant j} P_{i, j}(D) \equiv \sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} x_{i}(1-|x|) \frac{\partial}{\partial x_{i}} \\
& +\sum_{i<j}\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right) x_{i} x_{j}\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right) .
\end{aligned}
$$

Derriennic [5, p. 157] proved that $\Pi_{k}=\Pi_{k-1} \oplus V_{k}$ where Π_{k} is the set of polynomials of total degree k and V_{k} is the eigenspace of $P(D)$ with the eigenvalue $-k(k+d)$. Derriennic [5, p. 157] also showed that

$$
\begin{equation*}
M_{n} f=\sum_{k=0}^{n} \lambda_{n, k} v_{k}(f), \quad \lambda_{n, k}=\frac{(n+d)!n!}{(n+k+d)!(n-k)!}, \tag{4}
\end{equation*}
$$

where $v_{k}(f)$ is the orthogonal projection of f on V_{k}. (Obviously, V_{k} is an eigenspace of M_{n} with eigenvalue $\lambda_{n, k}$.)

Now, after setting the notations, we are ready to prove (3).
The operator $P_{i, j}(D)$ is self adjoint and $P_{i, j}(D): \Pi_{k} \rightarrow \Pi_{k}$. As $\left\langle P_{i, j}(D) v, u\right\rangle=\left\langle v, P_{i, j}(D) u\right\rangle=0$ for $v \in V_{k}$ and $u \in \Pi_{k-1}$, we have $P_{i, j}(D) V_{k} \rightarrow V_{k}$. Hence, one can show $V_{k}=U_{0, k} \oplus \cdots \oplus U_{k, k}$ where $U_{l, k}$ is the eigenspace of $P_{i, j}(D)$ in V_{k} with eigenvalue $-l(l+1)$. This follows as $P_{i, j}(D) v=\lambda v$ for some polynomial v yields $\lambda=-l(l+1), l$ being the leading power of x_{i} in the expansion of v and the expansion is in x_{1}, \ldots, x_{d} when dealing with $P_{i, i}(D)$ and in x_{r} for $r \neq j$ and $(1-|x|)$ in place of x_{j} for $P_{i, j}(D), i \neq j$. We may now remark that $U_{l, k}$, constructed for the pair i, j, is an eigenspace of $M_{n}, P(D)$, and $P_{i, j}(D)$ and hence, on $U_{l, k}$, these operators commute. As the direct sum of $U_{l, k}, 0 \leqslant k \leqslant m, 0 \leqslant l \leqslant k$, is Π_{m} and since polynomials are dense in $W_{p}^{\prime}(S) \equiv\left\{f:(\partial / \partial \xi)^{l} f \in L_{\rho}(S)\right\}$, we have
$M_{n} P_{i, j}(D) f=P_{i, j}(D) M_{n} f \quad$ and $\quad P_{i, j}(D) P(D) f=P(D) P_{i, j}(D) f$
in $W_{p}^{2}(S)$ and $W_{p}^{4}(S)$, respectively. (See [2, Lemma 2.5] for a similar argument.) Setting $u_{l, m}$ and v_{m} as the orthogonal projections of f on $U_{l, m}$ and V_{m}, respectively, we may use the Parseval equality to write

$$
\begin{align*}
\left\|P_{i, j}(D) M_{n} f\right\|_{2}^{2} & =\sum_{m=0}^{n} \sum_{l=0}^{m}\left(\lambda_{n, m} l(l+1)\right)^{2}\left\|u_{l, m}\right\|_{2}^{2} \\
& \leqslant \sum_{m=0}^{n} \sum_{l=0}^{m}\left(\lambda_{n, m} m(m+d)\right)^{2}\left\|u_{l, m}\right\|_{2}^{2} \\
& =\left\|P(D) M_{n} f\right\|_{2}^{2} \tag{6}
\end{align*}
$$

Using ($\left.1-\hat{\lambda}_{n, m}\right) n \geqslant \lambda_{n, m} m(m+d)$ which can be proved by induction on m, we have

$$
\begin{align*}
\left\|P(D) M_{n} f\right\|_{2}^{2} & =\sum_{m=0}^{n}\left(\lambda_{n, m} m(m+d)\right)^{2}\left\|v_{m}\right\|_{2}^{2} \\
& \leqslant \sum_{m=0}^{n}\left(\left(1-\lambda_{n, m}\right) n\right)^{2}\left\|v_{m}\right\|_{2}^{2}=n^{2}\left\|M_{n} f-f\right\|_{2}^{2} . \tag{7}
\end{align*}
$$

The details of the induction proof are omitted. In [3]

$$
\left\|P(D) M_{n} f\right\|_{p} \leqslant C n\left\|M_{n} f-f\right\|_{p}, \quad 1<p<\infty
$$

which is weaker than (7) for $p=2$, is proved.

References

1. H. Berens, H. S. Schmid, and Y. Xu, Bernstein-Durrmeyer polynomials on a simplex, J. Approx. Theory 68 (1992), 247-261.
2. W. Chen and Z. Ditzian, Multivariate Durrmeyer-Bernstein operator, in "Israel Mathematical Conference Proceedings, Vol.4, Conference in honor of A. Jakimovski, 1991," pp. 109-119.
3. W. Chen, Z. Ditzian, and K. Ivanov, Strong converse inequality for the BernsteinDurrmeyer operator, J. Approx. Theory, in press.
4. W. Chen and Z. Ditzian, Best polynomial and Durrmeyer approximation in $L_{p}(S)$, Indag. Math. (N.S.) 2(4) (1991), 437-452.
5. M. M. Derriennic, On multivariate approximation by Bernstein type polynomials, J. Approx. Theory 45 (1985), 155-166.
6. Z. Ditzian and V. Totik, "Moduli of Smoothness," Springer-Verlag, New York/Berlin, 1987.

Printed in Belgium

Uitgever: Academic Press, Inc.
Verantwoordelijke uitgever voor België:
Hubert Yan Maele
Altenastraal 20, B-8310 Sim-Kruis

